控制理论与控制工程专业硕士论文代写:有关陀

发布时间:2019-09-23 17:35

  控制理论与控制工程专业硕士论文代写:有关陀螺稳定吊舱控制系统稳定回路设计与分析

        目录:  
  摘要 4-5
  Abstract 5-6
  第1章绪论 9-15
  1.1课题背景及研究意义 9
  1.2国内外陀螺稳定平台的发展概况 9-11
  1.3视轴稳定控制研究概述 11-13
  1.3.1视轴稳定结构 11-12
  1.3.2视轴稳定控制方法 12-13
  1.4课题设计要求及研究内容 13-15
  第2章平台隔离载体扰动原理及稳定回路数学模型 15-28
  2.1陀螺稳定平台结构配置 15-17
  2.2陀螺稳定平台隔离载体扰动原理 17-21
  2.2.1两轴两框架平台隔离载体扰动原理 17-20
  2.2.2两轴四框架平台抗扰性能分析 20-21
  2.3稳定回路组成环节的数学模型 21-25
  2.3.1电机负载特性传递函数 22-23
  2.3.2功率放大环节的传递函数 23-24
  2.3.3速率陀螺的传递函数 24
  2.3.4稳定回路的数学模型 24-25
  2.4视轴稳定影响因素分析 25-27
  2.4.1机械结构误差 25
  2.4.2摩擦干扰力矩 25-26
  2.4.3机械谐振 26
  2.4.4陀螺信号 26-27
  2.4.5驱动系统误差 27
  2.5本章小结 27-28
  第3章视轴稳定控制方法 28-49
  3.1系统指标 28
  3.2隔离载体扰动的方法 28-34
  3.2.1平方滞后校正设计 28-31
  3.2.2隔离扰动仿真 31-34
  3.3补偿摩擦力矩的方法 34-43
  3.3.1基于库仑模型的自适应摩擦补偿 35-39
  3.3.2摩擦补偿仿真 39-43
  3.4陀螺信号的滤波方法 43-48
  3.4.1微机械陀螺噪声分析 43-44
  3.4.2小波变换阈值滤波 44-47
  3.4.3陀螺滤波仿真 47-48
  3.5本章小结 48-49
  第4章稳定回路电路设计 49-61
  4.1器件选型 49-55
  4.1.1伺服控制器 51-52
  4.1.2驱动电路 52-53
  4.1.3速率陀螺 53-54
  4.1.4测角电路 54-55
  4.2外围电路 55-59
  4.2.1MAX038外围电路 55-57
  4.2.2AD2S83外围电路 57-59
  4.3系统的实现 59-60
  4.4本章小结 60-61
  结论 61-62
  参考文献 62-65
  附录 65-69
  致谢 69

【摘要】 陀螺稳定吊舱近几年来发展十分迅速,被广泛用于军事领域和公安、消防及环境监控等民用领域。稳定回路是其控制系统的重要组成部分,用于隔离载体扰动,补偿摩擦力矩等非线性因素的影响,实现视轴稳定功能。本文针对陀螺稳定吊舱控制系统稳定回路展开设计与研究。本文首先概述了国内外陀螺稳定平台的发展现状,介绍了常用的视轴稳定控制结构及方法;然后根据本方案中陀螺稳定平台的结构配置,推导两轴稳定平台隔离载体扰动的原理,分析两轴四框架稳定平台的抗扰性能,并建立稳定回路的数学模型;分析了影响视轴稳定的各种因素,为设计控制算法提供了依据。在设计控制算法时,采用频域响应法设计稳定控制器,实现对吊舱系统外部载体扰动的隔离,并进行了仿真验证,仿真结果表明所设计的稳定控制器在抗扰性能方面能够达到稳定精度的要求。针对对系统影响较大的非线性因素——摩擦力矩,采用基于库仑模型的自适应控制方法实现对其补偿,仿真结果表明这种方法能够有效地抑制系统中摩擦力矩的影响,削弱视轴抖动角速度曲线中的尖峰,从而克服了平台框架运行时的低速抖动问题;同时这种方法也能够进一步提高系统的稳态精度。采用小波变换阈值滤波算法对陀螺输出信号进行去噪处理,仿真结果表明滤波后陀螺信号噪声标准差明显降低,陀螺噪声得到有效抑制。论文最后详细介绍了稳定回路硬件电路的器件选型情况,并针对所选器件设计外围电路,搭建稳定回路硬件电路,为控制算法的实现奠定了物理基础。

硕士论文代写【Abstract】 In recent years, gyro stabilized pod has been widely applied in both military and civil fields, such as public security, fire fighting and environment monitoring. Stabilization loop, a key component of the pod’s control system, is designed to isolate disturbance yielded by carrier and to compensate the friction torque, so LOS can be stabilized. The work of this paper is focused on the stabilization loop.First, the status quo of gyro stabilized platform development in both China and abroad is summarized and then conventional LOS stabilization control structures and methods are introduced. Later, based on the structure configuration of the gyro stabilized platform used in this paper, the disturbance-counteraction principal of a two-axis stabilized platform and disturbance-counteraction performance of a two-axis four-frame stabilized platform are derived and analyzed respectively, contributing to the establishment of a math expression for the stabilization loop. Then, different factors affecting the LOS stabilization are analyzed, providing a foundation for the control algorithm.While programming the control algorithm, frequency response method is applied in designing the stabilization controller to counteract disturbance from exterior carrier. Simulation results show that the controller could meet the stabilization precision requirement in terms of disturbance rejection. Self-adaptive control based on Coulomb Model is applied to make compensation for major impact yielded by friction torque. Simulation results demonstrate that the method could fulfill its task satisfactorily by reducing spikes of the LOS shake’s velocity curve and eliminating low velocity jittering; besides, using this method, the stabilization precision is further improved. The wavelet threshold-value filter is applied to de-noise the MEMS gyro. Simulation results show that the standard deviation of noise reduces obviously and the noise of gyro is restrained effectively.In the last part of the paper, device selection for the stabilization loop’s hardware circuit is introduced and corresponding peripheral circuit is designed. Then, the hardware circuit is built up on the printed circuit panel for the stabilization loop, bringing the control algorithm into physical use.

【关键词】 陀螺稳定平台; 稳定回路; 频域响应法; 模型参考自适应控制;

【Key words】 gyro stabilized platform; stabilization loop; frequency response method; model-reference self-adaptive control;

如果您有论文代写需求,可以通过下面的方式联系我们
点击联系客服

提交代写需求

如果您有论文代写需求,可以通过下面的方式联系我们。